Fully turbulent discrete adjoint solver for non-ideal compressible flow applications
نویسندگان
چکیده
منابع مشابه
Lattice and discrete Boltzmann equations for fully compressible flow
Equilibria for the common two-dimensional, nine-velocity (D2Q9) lattice Boltzmann equation are not uniquely determined by the Navier–Stokes equations. An otherwise undetermined function must be chosen to suppress grid-scale instabilities. By contrast, the Navier–Stokes–Fourier equations with heat conduction determine unique equilibria for a one-dimensional, five-velocity (D1Q5) model on an inte...
متن کاملNumerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملA Gas-Kinetic BGK Solver for Two-Dimensional Turbulent Compressible Flow
In this paper, a gas kinetic solver is developed for the Reynolds Average Navier-Stokes (RANS) equations in two-space dimensions. To our best knowledge, this is the first attempt to extend the application of the BGK (Bhatnagaar-Gross-Krook) scheme to solve RANS equations with a turbulence model using finite difference method. The convection flux terms which appear on the left hand side of the R...
متن کاملNon-premixed Flame-Turbulence Interaction in Compressible Turbulent Flow
Nonpremixed turbulent reacting flows are intrinsically difficult to model due to the strong coupling between turbulent motions and reaction. The large amount of heat released by a typical hydrocarbon flame leads to significant modifications of the thermodynamic variables and the molecular transport coefficients and thus alters the fluid dynamics [1],[4]. Additionally, in nonpremixed combustion,...
متن کاملDiscrete Adjoint of a fully-implicit coupled solver based on foam-extend using Algorithmic Differentiation
Adjoint based methods are an effective way to obtain accurate gradients for CFD optimization problems since the computation cost for the calculation of these gradients is relatively independent of the degrees of freedom. At the heart of such an optimization process lies the computation of topology sensitivity maps. Sensitivities are derivatives of an objective function resulting from CFD comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Global Power and Propulsion Society
سال: 2017
ISSN: 2515-3080
DOI: 10.22261/jgpps.z1fvoi